Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation

نویسندگان

  • Kevin R. Ramkissoon
  • Jennifer K. Miller
  • Sunil Ojha
  • Douglas S. Watson
  • Martha G. Bomar
  • Amit K. Galande
  • Alexander G. Shearer
چکیده

The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes have metabolic pathway n...

متن کامل

ModEnzA: Accurate Identification of Metabolic Enzymes Using Function Specific Profile HMMs with Optimised Discrimination Threshold and Modified Emission Probabilities

Various enzyme identification protocols involving homology transfer by sequence-sequence or profile-sequence comparisons have been devised which utilise Swiss-Prot sequences associated with EC numbers as the training set. A profile HMM constructed for a particular EC number might select sequences which perform a different enzymatic function due to the presence of certain fold-specific residues ...

متن کامل

Origin of primate orphan genes: a comparative genomics approach.

Genomes contain a large number of genes that do not have recognizable homologues in other species and that are likely to be involved in important species-specific adaptive processes. The origin of many such "orphan" genes remains unknown. Here we present the first systematic study of the characteristics and mechanisms of formation of primate-specific orphan genes. We determine that codon usage ...

متن کامل

Two in-House One-Step rRT-PCR Assays, Developed for Accurate and Rapid Molecular Identification of Newcastle Disease Virus, on the basis of SYBR Green and Specific TaqMan Probe

Background and Aims: Newcastle disease virus (NDV) is an avian paramyxovirus (A-PMV 1) and one of the major pathogens in poultries. Vaccination is intended to control the disease, nevertheless this virus is a growing threat to the poultry industry. So, early detection of the virus can prevent the spread of illness and avoid huge economic losses. Towards this goal, in this research, we develop...

متن کامل

FFPred: an integrated feature-based function prediction server for vertebrate proteomes

One of the challenges of the post-genomic era is to provide accurate function annotations for large volumes of data resulting from genome sequencing projects. Most function prediction servers utilize methods that transfer existing database annotations between orthologous sequences. In contrast, there are few methods that are independent of homology and can annotate distant and orphan protein se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013